Distant Supervision with Transductive Learning for Adverse Drug Reaction Identification from Electronic Medical Records

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distant Supervision with Transductive Learning for Adverse Drug Reaction Identification from Electronic Medical Records

Information extraction and knowledge discovery regarding adverse drug reaction (ADR) from large-scale clinical texts are very useful and needy processes. Two major difficulties of this task are the lack of domain experts for labeling examples and intractable processing of unstructured clinical texts. Even though most previous works have been conducted on these issues by applying semisupervised ...

متن کامل

Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records

Drug-drug interactions (DDI) account for 30% of all adverse drug reactions, which are the fourth leading cause of death in the US. Current methods for post marketing surveillance primarily use spontaneous reporting systems for learning DDI signals and validate their signals using the structured portions of Electronic Health Records (EHRs). We demonstrate a fast, annotation-based approach, which...

متن کامل

Improving sensitivity of machine learning methods for automated case identification from free-text electronic medical records

BACKGROUND Distinguishing cases from non-cases in free-text electronic medical records is an important initial step in observational epidemiological studies, but manual record validation is time-consuming and cumbersome. We compared different approaches to develop an automatic case identification system with high sensitivity to assist manual annotators. METHODS We used four different machine-...

متن کامل

Identifying Adverse Drug Events from Health Social Media Using Distant Supervision

Adverse drug events (ADEs) have been recognized as a significant healthcare problem worldwide. Prior studies have shown that health social media can be used to generate medical hypotheses and identify adverse drug events. Most studies adopted supervised learning approach for ADE detection in health social media, which requires human annotated data and is not scalable to large datasets. In this ...

متن کامل

Dose-Specific Adverse Drug Reaction Identification in Electronic Patient Records: Temporal Data Mining in an Inpatient Psychiatric Population

BACKGROUND Data collected for medical, filing and administrative purposes in electronic patient records (EPRs) represent a rich source of individualised clinical data, which has great potential for improved detection of patients experiencing adverse drug reactions (ADRs), across all approved drugs and across all indication areas. OBJECTIVES The aim of this study was to take advantage of techn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Healthcare Engineering

سال: 2017

ISSN: 2040-2295,2040-2309

DOI: 10.1155/2017/7575280